SYNTHESIS OF C-NUCLEOSIDES FROM NON-CARBOHYDRATE PRECURSORS. A 2.4-DIOXOINIDAZOLIDIN-5-YL RIBOFURANOSIDE

Akira Sera^{*}, Kuniaki Itoh, and Hiroshi Yamaguchi Department of Chemistry, Faculty of Science, Kobe University, Kobe 657, Japan

> Summary: 3-Phenyl-2,4-dioxoimidazolidin-5-yl ribofuranoside (a hydantoin C-riboside) was synthesized from a Diels-Alder adduct of furan with methyl nitroacrylate.

As a part of a program to synthesize C-nucleosides, we have recently reported that a high pressure reaction of furan with dialkyl acetoxymethylenemalonates gave corresponding Diels-Alder adducts,¹ and that the adducts were in turn converted to D,L- and β -D-ribofuranosyl malonates by subsequent hydroxylation and reductive retro aldol reactions.^{2,3} It was therefore of interest to expand the scope of this strategy which allows an easy access to C-nucleosides.

Conditions: a, r.t., 14 hr (100 %); b. $OsO_4-H_2O_2/acetone$, r.t., 24 hr (70 %); c, p-TsOH-Me₂C(OMe)₂/ acetone, r.t., 5 hr (>95 %); d, NH₃/MeOH, hv, -10 ^OC, 3 hr (57 %); e, TiCl₃/ H₂O-MeOH, r.t., 1 hr (70 %); f, PhNCO-Et₃N/CH₂Cl₂, r.t., 2 hr (60%); g, NaBH₄/ MeOH, 0 ^OC, 0.5 hr (70 %).

Reaction of furan with methyl 3-nitroacrylate gave the known cycloadducts,⁴ endo- and exo-1, in a ratio of 2:1. The adducts could be separated by chromato-However, the adduct mixture was immediately hydroxylated with OsO4 to graphy. yield a diol mixture, from which a 2-endo-nitro-5,6-exo-diol (2) was spontaneously crystallized out in a nearly pure state. After isopropylidenation, the product (3) was photoisomerized⁵ to give an bicyclic hydroxamic acid (4) as a Treatment of 4 with TiCl₃ afforded a lactam derivative $(5)^6$. sole product. The lactam 5 was found to resist to alkaline hydrolysis or reductive (NaBH₄) cleavage of the lactam ring. Accordingly introduction of an electron withdrawing group on the lactam N atom was carried out. Thus 5 was treated with phenyl isocyanate to give a urea derivative (6), and subsequent reduction of 6 with NaBH₄ proceeded smoothly to give 3-phenyl-2,4-dioxoimidazolidin-5-yl ribofuranoside (7)⁷(a hydantoin C-riboside) in 70 % yield.

The formation of 7 was rationalized by taking account of following sequential reactions; a cleavage of the acetal linkage of the primary reduction product (8) gave rise to a C-ribofuranoside having a ureidoacetic acid ester aglycon, and then a nucleophilic ring closure occurred to accomplish the hydantoin aglycon.

References and notes

- S. Sera, M. Ohara, T. Kubo, K. Itoh, H. Yamada, Y. Mikata, C. Kaneko, and N. Katagiri, J. Org. Chem., 53, 5460 (1988).
- N. Katagiri, H. Akatsuka, T. Haneda, C. Kaneko, and A. Sera, J. Org. Chem., 53, 5464 (1988).
- 3. N. Katagiri, H. Akatsuka, C. Kaneko, and A. Sera, Tetrahedron Lett., 29, 5397 (1988).
- 4. G. Just, A. Martel, K. Grozinger, and M. Ramjeesingh, Can. J. Chem., 53, 131 (1975).
- 5. K. Yamada, K. Kishikawa, and M. Yamamoto, J. Org. Chem., 52, 2327 (1987).
- 6. 6,7-Isopropylidenedioxy-4-methoxycarbonyl-3-aza-8-oxabicyclo[3.2.1]octan-2one (5): m.p., 167-168 ^OC; MS, (m/z) 242(M⁺-CH₃); ¹H NMR (CDCl₃), & 1.33 (s, Me), 1.49 (s, Me), 3.82 (s, Me), 3.87 (d, J=2.5 Hz, H₄), 4.41 (s, H₅), 4.81 (br s, H_{1,6,7}), 7.29 (br d, NH); IR (KBr), 1705 (NHC=O), 1740 cm⁻¹,
- 7. 3-Phenyl-2,4-dioxoimidazolidin-5-yl 2,3-O-isopropylidene-β-ribofuranoside (7): m.p., 206-207 °C; MS (m/z), 348 (M⁺); ¹H NMR (acetone-d₆), δ 1.32 (s, Me),1.50 (s, Me), 3.60-3.75 (m, H₅), 4.05-4.18 (br m, ring-H and OH), 4.35 (q, J= 4Hz, H₄), 4.50 (dd, J=1.5 and 4 Hz, H₁), 4.77 (dd, J=4 and 6.5Hz, H₂), 4.91 (dd, J=4 and 6.5Hz, H₃), 7.42 (s, Ar-H), 7.57 (br, NH); IR (KBr); 3500-3200 (OH), 1714 cm⁻¹(C=O).

(Received in Japan 30 July 1990)